
 Python 3 Instructions

1. Introduction to level 3 Python

1.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

1.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

1.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

1.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

1.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

2. More on using labels

2.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.



2.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

2.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

2.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent

root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

2.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

3. Using Entry widgets

3.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

3.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.



3.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

3.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent

root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

3.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

4. Creating button widgets

4.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

4.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

4.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called
root.

3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!



4.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent

root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

4.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

5. Using the grid layout system

5.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

5.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

5.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called
root.

3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

5.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.



5.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

6. Option menus and Comboboxes

6.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

6.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

6.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called
root.

3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

6.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

6.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

7. Organizing the GUI with frames and
labelframes



7.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

7.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

7.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

7.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

7.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

8. Creating checkbuttons and radiobuttons

8.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.



8.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

8.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

8.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent

root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

8.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

9. Adding functionality to our app

9.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

9.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.



9.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

9.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent

root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

9.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

10. Review lessons 1-9 and debugging

10.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

10.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

10.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called
root.

3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!



10.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent

root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

10.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

11. Intro to object-oriented programming

11.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

11.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

11.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called
root.

3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

11.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.



11.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

12. Creating classes

12.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

12.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

12.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called
root.

3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

12.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

12.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

13. Adding methods to the class



13.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

13.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

13.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

13.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

13.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

14. Combining the GUI code with the OOP code

14.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.



14.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

14.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

14.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent

root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

14.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

15. Refactoring functions

15.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

15.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.



15.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

15.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent

root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

15.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

16. Adding more functions

16.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

16.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

16.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called
root.

3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!



16.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent

root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

16.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

17. Configuring options in functions

17.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

17.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

17.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called
root.

3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

17.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.



17.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

18. Handling user actions

18.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

18.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

18.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called
root.

3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

18.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

18.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

19. Reading and writing files



19.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.

19.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

19.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

19.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

19.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?

20. Review lessons 11-19

20.1. Introduction to Level 3 Python!

Welcome to the level 3 Python course! In this course, you will learn how to
build a graphical user interface, or GUI, using a built in Python module
called tkinter. You will also learn about grouping related functionality into
classes, in a method of programming called object-oriented programming
or OOP.

For this course, it will help if you are familiar with the content covered in the
level 1 and 2 Python courses. In the code editor, you will find a program for
a To Do List from the level 2 course. Let's do a bit of revision.

1. On line 30, create an empty list called todo_list to store the
tasks.

2. On line 38, run the add_tasks() function if the user chooses
option 1 from the menu.

3. On line 21, append the new task the user has entered to
todo_list.

4. Click to test out your code.
5. Click to see if your code is correct and move on to the next task!

If you found anything in those tasks unfamiliar or difficult, it might be good
to go back and revisit some of the level 2 course before continuing with this
one.



20.2. Introduction to GUIs

Up until now, all of our Python code has been run in the console or shell. It
has been text-based, and run by the user inputting text into the program.

A graphical user interface (GUI), on the other hand, is when your program
has a window where the user can interact with it. This window contains
widgets such as text fields, buttons, drop-down menus and more for the
user to click and type in.

We're going to learn how to build a GUI using a module called tkinter, but
first let's have a look at one. In the editor is a LOT of code - don't worry, you
don't need to understand it all just yet!

1. Click to see the GUI in action.
2. Read through the comments in the code to see how it is put

together.
3. Find line 15, and change the window title to "My Python GUI

Demo".
4. On line 18, change the Labelframe text to say "Greeting Program".
5. On line 49, change the button text to say "Greet me!"
6. Click to see your changes.
7. Click to see if your code is correct.

20.3. Creating a tkinter window

Ok, so let's start at the beginning now. The first thing we need to do to use
tkinter to create a GUI is import the module:

from tkinter import *

This is slightly different to our usual import syntax--click here for an
explanation.

We can then use it to create a window by doing the following:

root = Tk()

The variable root can be any name, but root is used most often. To give the
window a title, we use the following line:

root.title("Here is a window!")

And to get the window to run we use the mainloop() function, which goes
at the end after all of your GUI code:

root.mainloop()

1. On line 1 import tkinter using the new syntax.
2. Under the relevant comment, on line 4, create a window called

root.
3. Set the title for the window to "My GUI App" on line 5.
4. Under the next comment, on line 8, run the mainloop() function so

that your window will appear.
5. Click to see your window!

20.4. Adding a label to the window

Ok, we've got a window, but that's not very exciting by itself! So, let's look at
how to add our first widget - a Label.

There are 2 basic steps for adding a widget in tkinter: my_label =
Label(root, text="My Label")

 my_label.pack()

First, we create the label, giving it a name. The parameters in the brackets
say that root is the parent widget, in other words that this label should go
inside the root window, and that the text on the label should be "My Label".

The second line uses the pack() function to actually put the widget into the
window. We will learn more about ways of doing this later, but for now just
know that pack() puts each widget into the window after any that have
already been packed.

1. Under the relevant comment in the editor, create a label called
label1, with parent root and text "My GUI App!"

2. On the next line, add label1 to the window using pack().
3. Click to see the window with the new label added.
4. Under the next comment, create a label called label2, with parent
root also, but this time make the text a longer sentence–it can say
anything.

5. Pack the label into the window.
6. Click to see what happens now that we have a label with longer

text.

20.5. Review Quiz!

Before we carry on learning about tkinter widgets, let's review what we've
learned so far!

Review Quiz Questions:
 

1. What does GUI stand for?
2. What is the name of the GUI module we are using in this course?
3. Why would we import tkinter using from tkinter import *

rather than just import tkinter?
4. What type of GUI element does root = Tk() create?


